KEVIN EPPACHER

Robotics Software Engineer

 J +43 681 10499133

♥ Vienna, Austria

github.com/KevinEppacher

kevin-eppacher.github.io

EXPERIENCE

Research Assistant – Tutorial Author **UAS Technikum Vienna**

🗖 Aug 2025 - Oct 2025

Vienna. Austria

 Authored student tutorials on ROS 2, nonlinear optimization with PyTorch, and end-to-end deep reinforcement learning using Stable-Baselines and Gymnasium.

Industrial Robotics Software Engineer Blue Danube Robotics GmbH (AIRSKIN)

Aug 2023 - Jul 2025

Vienna, Austria

- Developed and deployed low-level robot programs (Movelt C++/ KRL / RAPID) involving kinematics, tool calibration, coordinate-frame transformations, and precise motion execution for AIRSKIN-equipped robots.
- Built an automated sensitivity measurement system, including depth-based visualization of contact points and geometric evaluation of measurement data.
- Created integration concepts for customer-specific AIRSKIN solutions, including cell layout design, workspace modeling, and feasibility analysis.
- Supported quality inspection workflows and robotic handling tasks with geometry-aware motion planning and cycle-time optimization.

Bachelor Thesis Intern

Automation and Control Institute (ACIN), TU Vienna

Feb 2023 - Jul 2023

Vienna, Austria

- Developed a control system for high-speed drone tracking using a pan-tilt camera and cascaded PID controller.
- Implemented Kalman-filter-based sensor fusion for camera-based tracking and trajectory prediction in ROS / OpenCV.

Prototype Engineer

GKN Driveline AG

☐ Jun 2019 - Sep 2019

Bruneck, Italy

 Assembled and tested prototype transmissions and optimized assembly processes for pilot production.

EDUCATION

M.Sc. Robotics

UAS Technikum Vienna

1 2023 - ongoing

- Vienna, Austria
- Focus on computer vision, probabilistic robotics, and nonlinear optimization.
- Thesis: "SAGE Semantic-Aware Guided Exploration with Persistent Memory" (in progress).

PROFILE

Robotic software engineer with experience in computer vision, 3D perception, and real-time system design. Develops high-performance algorithms across perception, localization, and action for camera-based robotic platforms.

SKILLS

Programming Languages

C/C++ Python

Frameworks & Libraries

ROS 2 PyTorch / CUDA OpenCV
BehaviorTree.CPP Gymnasium (RL)

Matlab / Simulink

Tools & Environment

Git / GitHub Docker VS Code
CMake Linux (Ubuntu)
Isaac Sim/Gym

Computer Vision & Al

Tracking & 3D Geometry

Visual-Language Models (VLM)

Object Detection & Segmentation

Robotics & Control

Model Predictive Control (MPC)

Nonlinear Optimization

Kinematics & Dynamics

Real-Time Systems

LANGUAGES

English	••••
German	$\bullet \bullet \bullet \bullet \bullet$
Italian	$\bullet \bullet \bullet \circ \circ$

B.Sc. Mechatronics & Robotics **UAS Technikum Vienna**

1 2020 - 2023

Vienna, Austria

- Focus on dynamics, control theory, and mobile and articulated robotics.
- Thesis: "Design of a Cascaded Position and Velocity Controller for a Pan-Tilt Camera Tracking UAVs."

Higher Technical College (HTL) – Mechatronics HTL Mödling

2015 - 2020

Mödling, Austria

- Specialized in control theory, mechanical design, and electrical engineering.
- Graduated with a diploma in Mechatronics Engineering.

PROJECTS

Selected projects focusing on control, semantic mapping, and autonomous exploration.

SAGE – Semantic-Aware Guided Exploration with Persistent Memory

Master's Thesis

1 2025 - ongoing

- Developed a real-time semantic exploration system using calibrated RGB-D camera streams (intrinsic/extrinsic parameters) for depth fusion, point cloud generation, and spatial perception.
- Leveraged 2D navigation SLAM and 3D semantic point cloud maps, combined through geometry-aware fusion pipelines to enhance spatial understanding.
- Integrated image preprocessing, object detection (YOLO-E), and 3D semantic fusion (OpenFusion) to create persistent scene representations for open-vocabulary reasoning.
- Combined multi-source sensor fusion and behavior tree decision modules to enable autonomous object search and exploration under real-time constraints.

Nonlinear Model Predictive Controller (nMPC) for Differential Drive Mobile Robot (DDMR)

Frameworks: ROS 1 & 2 / CasADi / Python / PyTorch / Docker

1 2024 - 2025

- Designed an nMPC local planner predicting future robot states via kinematic modeling and online optimization.
- Benchmarked against DWA and TEB planners in Gazebo, demonstrating smoother, constraint-compliant trajectories.

Automated Sensitivity Measurement System (AIRSKIN)

Frameworks: ROS Noetic / Movelt / C++ / Docker

2024

- Built an automated robotic test bench for AIRSKIN pads, reducing measurement time from hours to minutes.
- Integrated UR10, force-torque sensing, and 3D camera point cloud visualization via Movelt and RViz; GUI developed in ImGui C++.

Full portfolio: KevinEppacher.github.io

REFEREES

Dr. Michael Zillich

@ CTO, Blue Danube Robotics (AIRSKIN)

Supervised industrial robotics projects