
Efficient Monte Carlo Localization for
Mobile Robots:

Implementation and Evaluation
Kevin Eppacher, BSc.

Abstract—This paper presents an implementation
and evaluation of a Monte Carlo Localization (MCL)
algorithm for a Differential Drive Mobile Robot
(DDMR), with a comparison to the widely used
ROS Adaptive Monte Carlo Localization (AMCL)
algorithm. The MCL algorithm demonstrates efficient
localization using only 100 particles, significantly
fewer than the 500 to 3000 particles typically used
by AMCL. A novel resampling strategy, which in-
cludes generating 80% random particles, enhances
the MCL’s ability to quickly find the initial pose
and recover from localization loss. Despite these
improvements, MCL remains computationally inten-
sive with increasing particle numbers. Future work
includes averaging the strongest particle positions
for smoother pose estimation and applying machine
learning techniques to optimize sensor and motion
model parameters.

I. INTRODUCTION

Monte Carlo Localization (MCL), also known as
the Particle Filter, is a probabilistic approach for
estimating the pose of a robot within a given map
[7]. Unlike other methods such as Bayesian filters,
Kalman Filters (KF), and Extended Kalman Filters
(EKF), MCL can handle non-linearities and multi-
modal distributions, making it highly effective in
complex environments [1].

The primary advantage of MCL over Bayesian
filters, KF, and EKF lies in its ability to represent
a diverse range of possible poses through a set
of weighted particles, allowing for greater flexibil-
ity and robustness in localization tasks [3]. This
adaptability makes MCL particularly suitable for
dynamic and unpredictable environments.

However, MCL also faces challenges, particu-
larly in defining accurate sensor models for dif-
ferent types of robots, such as Differential Drive
Mobile Robots (DDMR). Developing precise sensor
models is crucial for the performance of MCL,
as inaccuracies can lead to significant localization
errors [5].

II. STATE OF THE ART

The Monte Carlo Localization (MCL) algorithm
relies heavily on the accuracy of its sensor models.
While Thrun’s beam range finder model is widely
used and effective [7], several other sensor models
have been developed to enhance the performance
of Particle Filters.

One notable model is the likelihood field model
proposed by Thrun et al., which precomputes a
likelihood field for range measurements. This model
improves computational efficiency and accuracy by
using precomputed values to quickly evaluate the
likelihood of measurements [7].

Another advanced sensor model is the end-point
model, which evaluates the likelihood of the end
points of the laser beams instead of the entire beam
path. This model simplifies the computation and
is particularly useful in environments with sparse
obstacles [5].

Additionally, machine learning techniques have
been applied to develop data-driven sensor models.
For instance, a support vector learning-based parti-
cle filter has been proposed for underwater acoustic
sensor networks, which enhances localization ac-
curacy by dealing with distorted data using least-
square support vector regression (LSSVR) [6]. An-
other approach uses convolutional neural networks
(CNNs) to learn the sensor model parameters, pro-
viding a more adaptable and accurate model for
various environments [2].

These advanced sensor models, along with
Thrun’s beam range finder model, contribute to
the robustness and adaptability of MCL in various
robotic applications. This work contributes to the
further improvement in the implementation of the
particle filter, regarding localization accuracy, com-
putation and robustness.

III. MATERIALS AND METHODS

This section explains the methods used to carry
out the experiments. The inputs for the Monte Carlo
Localizer (MCL), also known as Particle Filter, are
the initial particles, the map, the motion commands
and the laser scan measurement from the mobile
robot. In the first line of the algorithm 1, the
particles must be initialized with a position and
a weight. In this work, the position of the initial
particles was randomly generated on unoccupied
grids of the map. After the first loop, the initial
particles are the resampled particles. The pose of
the particles is randomly predicted based on the
motion command and the previous position of the
particles (Algorithm 1, line 3). The particles are
then evaluated by the sensor model in line 4.

The more likely the randomly predicted particle
corresponds to the scan measurement, the greater
the weighting. The predicted position and the cor-
responding particle are added to a list of particles.
In the resampling step, a new set of particles Xt is
created by selecting particles from X̄t proportional
to their weights (Algorithm 1, lines 7-10). This
ensures that particles with higher probability are
selected more often, which concentrates the particle
set on the most probable positions. In addition,
random particles are inserted to diversify the par-
ticle distribution (Algorithm 1, lines 11-15). This
is done by randomly selecting cells c and drawing
orientations θ from a uniform distribution between
0 and 2π. These random particles are added to
the set of resampled particles to make the model
more robust against uncertainties. Finally, the set
Xt, which represents the estimated position of the
robot, is returned (Algorithm 1, line 16). The MCL
Algorithm was taken and modified from [7].

Algorithm 1 MCL(Xt−1, ut, zt,m)

1: X̄t = Xt = ∅
2: for m = 1 to M do
3: x

[m]
t = sample_motion_model(ut, x

[m]
t−1)

4: w
[m]
t = measurement_model(zt, x

[m]
t ,m)

5: X̄t = X̄t + ⟨x[m]
t , w

[m]
t ⟩

6: ResampledParticles = Resampling(X̄t)
7: for m = 1 to ResampledParticles do
8: draw i with probability ∝ w

[i]
t

9: pose
[i]
t ← pose

[i]
t +N (0,Σ) ▷ Add normal

distributed noise to pose
10: add pose

[i]
t to Xt

11: for j = 1 to numRandomParticles do
12: Sample a cell: c ∼ U
13: Generate random orientation:

θ ∼ Uniform(0, 2π)
14: Create particle p = (cx, cy, θ, w), where

w = 1
numParticles

15: Add p to Xt

16: return Xt

Algorithm 2 predicts the pose of the particles.
First, random noise is added to the linear and
angular velocities from the motion commands using
a normal distribution sampling function (Algorithm
2, lines 1-3). [7] did not consider the division by
zero if ω̂ converges to zero in his Motion Model.
Therefore, if ω̂ is significantly greater than zero, the
motion model results in angular motion (Algorithm
2, lines 4-5); otherwise, the robot’s motion is linear.

To evaluate the predictions of the particles, a
Sensor Model is required to assess the accuracy
of the particles’ poses. In this work, the beam
range finder model was used from [7]. Algorithm
4 calculates the probability of each scan measure-
ment, by multiplying the probabilities of each laser

Algorithm 2 sample_motion_model_velocity(ut, xt−1)

1: v̂ = v + sample(α1|v|+ α2|ω|)
2: ω̂ = ω + sample(α3|v|+ α4|ω|)
3: γ̂ = sample(α5|v|+ α6|ω|)
4: if |ω̂| >> 0 then
5: x′ = x− v̂

ω̂ sin θ + v̂
ω̂ sin(θ + ω̂∆t)

6: y′ = y + v̂
ω̂ cos θ − v̂

ω̂ cos(θ + ω̂∆t)
7: else
8: x′ = x+ v̂ cos θ∆t
9: y′ = y + v̂ sin θ∆t

10: θ′ = θ + ω̂∆t+ γ̂∆t
11: return xt = (x′, y′, θ′)T

beam of the scan measurement. In order to calculate
the probabilities of each laser beam, four different
probability density functions are needed. The mean
of the probability density functions (PDF) are the
range of the particles and the random variable is
the range of the scan measurement. Imaginable
by using the scan measurement laser beams as
a template and comparing it with each particle.
If the scan measurement and the particles raycast
measurement overlap, the probability is high. The
raycast Algorithm 3 calculates the ranges of each
scan with the pose of the particle and the map.
Depending on the map resolution, the range incre-
ments until ich hits a occupied cell or is out of map
boundary.

Algorithm 3 raycasting(zt, xt,m)

1: δ = map_resolution
2: W = map.info.width, H =

map.info.height
3: x0 = xt_x, y0 = xt_y
4: for k = 1 to K do
5: θk = θp + zt.angle_min + k ·

zt.angle_increment
6: while (r < rmax) and hit is false do
7: r = r + δ
8: x = x0 + r cos(θk)
9: y = y0 + r sin(θk)

10: mapx =
⌊
x−map.info.origin.position.x

δ

⌋
11: mapy =

⌊
y−map.info.origin.position.y

δ

⌋
12: if mapx < W and mapy < H then
13: index = mapy · width+mapx
14: if mapatindexoccupied then
15: hit = true
16: else
17: break
18: Rays← Rays ∪ r

19: return Rays

The probability density function in Equation 1
evaluates the likelihood of a measured laser scan
distance zkt given the particle position xt and the
map m.

Algorithm 4 beam_range_finder_model(zt, xt,m)
1: q = 1
2: for k = 1 to K do
3: compute zk∗t for the measurement zkt using

ray casting
4: p = zhit · phit(z

k
t | xt,m) + zshort · pshort(z

k
t |

xt,m)
5: +zmax · pmax(z

k
t | xt,m) + zrand ·

prand(z
k
t | xt,m)

6: q = q · p
7: return q

phit(z
k
t | xt,m) =

{
ηN (zkt ; z

k∗
t , σ2

hit) if 0 ≤ zkt ≤ zmax

0 otherwise
(1)

Here, N (zkt ; z
k∗
t , σ2

hit) is a normal distribution
with mean zk∗t (expected measurement) and vari-
ance σ2

hit. The factor η in Equation 2 normalizes
the distribution so that the total probability sums to
1. In this work, the integral is solved numerically
by the trapezoidal rule, which is demonstrated in
Algorithm 5.

η =

(∫ zmax

0

N (zkt ; z
k∗
t , σ2

hit) dz
k
t

)−1

(2)

This function is relevant only in the range 0 ≤
zkt ≤ zmax and models the hit probability of a
laser scan. Changing σhit affects the spread of
the normal distribution: a larger σhit results in a
wider distribution, indicating more uncertainty in
the measurements, while a smaller σhit results in a
narrower distribution, indicating higher confidence
in the measurements.

The probability density function pshort(z
k
t |

xt,m) evaluates the likelihood of a measured dis-
tance zkt being shorter than the expected measure-
ment zk∗t .

pshort(z
k
t | xt,m) =

{
ηλshorte

−λshortz
k
t if 0 ≤ zkt ≤ zk∗t

0 otherwise
(3)

Here, λshort is a parameter of the exponential
distribution, and η normalizes the distribution:

η =
1

1− e−λshortzk∗
t

(4)

Increasing λshort makes the distribution decay
faster, implying that shorter distances are more
likely, while decreasing λshort makes the distribution
decay slower, implying that longer distances are
more likely within the range [0, zk∗t].

The probability function pmax(z
k
t | xt,m) models

the likelihood that the measurement zkt equals the
maximum range zmax.

pmax(z
k
t | xt,m) = I(zkt = zmax) =

{
1 if zkt = zmax

0 otherwise
(5)

This function is a simple indicator function that
assigns a probability of 1 if the measurement is ex-
actly the maximum range and 0 otherwise. Chang-
ing zmax directly affects the threshold at which this
function assigns a non-zero probability.

The probability density function prand(z
k
t | xt,m)

models random measurements within the range
[0, zmax).

prand(z
k
t | xt,m) =

{
1

zmax
if 0 ≤ zkt < zmax

0 otherwise
(6)

This function is a uniform distribution within
the range [0, zmax). Increasing zmax decreases the
probability density (since the total probability must
sum to 1), while decreasing zmax increases the
probability density within the specified range.

The parameters for the MCL are given in Table
1, in which the particles quantity, sensor model
parameters and motion model parameters are com-
pared with the AMCL algorithm from ROS [4].
These parameters are empirically tested, in regard
of computational performance and localization per-
formance.

IV. EXPERIMENTAL RESULTS

In this experiment, a Turtlebot navigates in a
circular path using MoveBase and AMCL for lo-
calization. Concurrently, our MCL (Particle Filter)
implementation runs, visualizing all particles and
publishing the pose of the most probable particle.
The objective is to compare the accuracy of our
MCL against the ground truth and AMCL.

Figure 1 illustrates the visualization of the ray-
cast laser beams and the measured scan beams.
Even within the simulation environment, laser scan
measurements exhibit errors. These errors manifest
when the laser beams either miss an occupied cell,
such as a wall, or incorrectly pass through a wall.
The scan serves as a reference template, against
which the raycasts from each particle are compared.
When the simulated raycasts align with the actual
scan measurements, the probability weight assigned
to the corresponding particle is maximized.

The performance of the Particle Filter is further
evaluated by comparing the estimated positions
with the ground truth. Figure 2 shows the x and
y positions of the Turtlebot over time. The red and
orange lines represent the ground truth positions,
the green and purple lines indicate the estimated
positions by the MCL, and the blue lines show
the Euclidean error between the estimated positions
and the ground truth. The mean deviation observed

Fig. 1: Visualization of the raycast beams and the
scan beams.

is 0.3 meters, with a minimum deviation of 0.03
meters and a maximum deviation of 0.6 meters.

Fig. 2: MCL accuracy plot showing the ground truth
positions, estimated positions, and the Euclidean
error.

Figure 3 shows the comparison between the
ground truth and estimated pose in a 2D space,
highlighting the accuracy of the estimated path.

The particle distribution at a specific instance is
illustrated in the histogram in Figure ??, highlight-
ing the spread and concentration of particles. This
example histogram demonstrates the distribution of
weights across 10 particles, showing the number of
particles that fall into each weight bin.

A key highlight of our MCL implementation is
the efficient use of particles. Compared to AMCL,
which utilizes between 500 and 3000 particles,
our MCL achieves accurate localization with only
100 particles. This efficiency is enhanced by our
resampling strategy, where 50% of the particles
are randomly generated on the map and only 50%
are resampled. This approach helps the algorithm

Fig. 3: Ground Truth vs Estimated Pose.

Fig. 4: Particle Histogram.

quickly find the initial pose due to the random
particles and recover rapidly if the position is lost.

Lastly, 5 visualizes the DDMR with a set of
pose arrays, calculated from the particle filter. The
red arrow represents pose of the DDMR, which is
calculated with the mean of the resampled particles.

Fig. 5: Visualization of the pose array from the
particle filter

V. SUMMARY AND OUTLOOK

In this work, a MCL algorithm was implemented
and evaluated for a Turtlebot, with its performance
compared against the widely used ROS AMCL
algorithm. Despite the efficiency improvements in
the MCL implementation, particularly with the use
of only 100 particles compared to AMCL’s 500
to 3000 particles, the particle filter remains com-
putationally intensive, especially as the number of
particles increases beyond 500.

To further enhance the accuracy and smooth-
ness of pose estimation, future work could involve
averaging the positions of the strongest particles.
This approach would result in a more accurate
and smoother pose estimation, which is particularly
beneficial for applications such as Model Predictive
Control (MPC), where smoother predictions can
lead to better performance.

Additionally, machine learning techniques could
be employed to optimize the sensor model and
motion model parameters. By using data-driven ap-
proaches, it is possible to more accurately identify
these parameters, potentially improving the overall
performance and robustness of the localization al-
gorithm.

REFERENCES

[1] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo
localization for mobile robots,” in Proceedings 1999 IEEE
International Conference on Robotics and Automation (Cat.
No.99CH36288C), vol. 2, 1999, pp. 1322–1328 vol.2.

[2] M. Eder, M. Reip, and G. Steinbauer, “Using particle filter
and machine learning for accuracy estimation of robot local-
ization,” in Advances and Trends in Artificial Intelligence.
From Theory to Practice, ser. Lecture Notes in Computer
Science, F. Wotawa, G. Friedrich, I. Pill, R. Koitz-Hristov,
and M. Ali, Eds. Springer, Cham, Jun. 2019, pp. 700–713,
32nd International Conference on Industrial, Engineering
amp; Other Applications of Applied Intelligent Systems,
IEA/AIE 2019 ; Conference date: 09-07-2019 Through 11-
07-2019.

[3] D. Fox, “Kld-sampling: Adaptive particle filters and mobile
robot localization,” 10 2001.

[4] W. Garage, “Adaptive monte carlo localization (amcl),” http:
//wiki.ros.org/amcl, 2016, accessed: 2023-06-29.

[5] G. Grisetti, C. Stachniss, and W. Burgard, “Improved tech-
niques for grid mapping with rao-blackwellized particle
filters,” IEEE Transactions on Robotics, vol. 23, no. 1, pp.
34–46, 2007.

[6] X. Li, C. Zhang, L. Yan, S. Han, and X. Guan,
“A support vector learning-based particle filter
scheme for target localization in communication-
constrained underwater acoustic sensor networks,”
Sensors, vol. 18, no. 1, 2018. [Online]. Available:
https://www.mdpi.com/1424-8220/18/1/8

[7] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics.
Cambridge, MA: MIT Press, 2005.

http://wiki.ros.org/amcl
http://wiki.ros.org/amcl
https://www.mdpi.com/1424-8220/18/1/8

APPENDIX

Algorithm 5 Numerical integration using the trape-
zoidal rule

1: function NUMERICALINTEGRATION(mean,
z_max_range, num_steps)

2: step_size = z_max_range
num_steps

3: integral = 0.0
4: for i = 0 to num_steps do
5: z = i · step_size
6: weight ={

0.5 if i = 0 or i = num_steps
1.0 otherwise

7: integral = integral + weight ·
normalDistribution(z,mean)

8: integral = integral · step_size
9: return integral

Fig. 6: Visualization of the particles from ROS
AMCL and our MCL implementation.

Parameter MCL AMCL
z_hit 0.5 0.5
z_short 0.05 0.05
z_max 0.05 0.05
z_rand 0.5 0.5
sigma_hit 0.2 0.2
lambda_short 0.1 0.1
Particle
Quantity

100 min_particles:
500,
max_particles:
3000

Percentage
random
particles

0.5 N/A

perc_rays 20 N/A
alpha1 0.1 0.1
alpha2 0.1 0.1
alpha3 0.1 0.1
alpha4 0.1 0.1
alpha5 0.1 N/A
alpha6 0.1 N/A
laser max
range

N/A 3.5

laser max
beams

N/A 180

Tab. 1: Comparison of MCL and ROS AMCL [4]
parameters

	Introduction
	State of the Art
	Materials and Methods
	Experimental Results
	Summary and Outlook
	References

